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Abstract

Estimation noise is a well-known issue in empirical portfolio modelling. Estimated weights

are known to have huge standard errors and bad predictive quality, which often results in

an inferior out-of-sample portfolio performance compared to simple alternatives. Most of

the recent literature concentrates on the improvement of covariance matrix forecasts, which

would hopefully result in the better portfolio performance. However, the proposed models

often suffer from the curse of dimensionality, such that the forecasting error still dominates

the theoretical gain. In this paper we propose a direct weight estimator (DWE), which

explicitly takes into account forecasting risk and avoids the over-parametrization problem

by forecasting a one-dimensional portfolio measure directly. We define a forecasting error

based on realized measures and optimize for a weight vector which results in a more precise

forecast in terms of the forecasting error variance and at the same time is not far from the

optimal portfolio solution. The proposed method is shown to outperform commonly used

approaches in both simulation and empirical studies.
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1 Introduction

It has been long recognized in the literature that modelling underlying volatility of a return

process is one of the key elements of the investment decision. The fundamental idea is based

on the assumption that the investment problem can be formulated in terms of the first two

moments of the return process. When it comes to a portfolio allocation problem, not only the

latent volatility process of individual stock returns needs to be estimated and forecasted, but

also the covariance of the portfolio constituents.

The financial econometrics literature on multivariate volatility estimation and forecasting is

very rich (Bauwens et al., 2006). A commonly used class of Dynamic Conditional Correlation

(DCC) models by Tse and Tsui (2002) and Engle (2002) has been often criticised for a curse of

dimensionality. These models use a so-called DRD decomposition, which splits the covariance

matrix into a diagonal matrix of individual stock variances D and a conditional correlation matrix

R, whereby D and R are estimated and modelled separately. Most of the DCC specifications

require a highly parametric two-step likelihood estimation subject to non-trivial stationarity

and positive definiteness constraints, which become intractable when the number of assets in the

portfolio is large.

As the full parametric specification of the DCC is often infeasible, one of the most common

ways to approach the problem of over-parametrization is to simplify the parametric specification

of correlations and/or variances at the cost of model flexibility, e.g. a scalar DCC model is not

able to capture volatility spillover effects. Another direction of volatility forecasting looks into

the shrinkage approaches. Ledoit and Wolf (2004; 2014) wrote a series of papers on different

shrinkage approaches aiming at stabilizing the high dimensional covariance estimation problem;

among recent contributions Engle et al. (2019) use eigenvalue shrinkage to stabilize the inverse

of estimated covariance matrix inverse for further use in the global minimum variance portfolio.

Amongst other improvements in the modelling of multivariate volatility are the contributions of

Hautsch et al. (2015); Jin and Maheu (2013); Golosnoy et al. (2012); Hafner and Linton (2010),

however the curse of dimensionality prevents any of the multivariate models to significantly

dominate benchmark DCC models in a general set up.

Another direction in the portfolio optimization literature tackles the problem of over-

parametrization by regularizing the portfolio weight vector directly. An example among many
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other contributions is Jagannathan and Ma (2003), who propose to impose a norm-constraint on

the portfolio optimization problem to account for no short sale constraints. Similarly Brodie

et al. (2009), Li (2015), Goto and Xu (2015) use the `1-penalization (lasso) and Yen (2015) the

`2-penalization (ridge) to constrain the portfolio weights.

The major drawback of both shrinkage approaches is the choice of tuning parameters, which is

often non-trivial and derived either under unrealistic assumptions on the data generating process

or relies on the estimates of the first and second moments of the return process. As an alternative

of the return-based estimation Bollerslev et al. (2018b) recently proposed a HAR-DRD model,

which became feasible due to the availability of the high-frequency data. Intra-day returns allow

for ex post nonparametric and consistent estimation of the daily realized covariance matrices.

With a simple HAR model of Corsi (2009) one can reliably forecast univariate realized variances

and correlations, which are combined together in a DRD decomposition. The HAR-DRD model

is extremely easy to estimate, however, it is subject to the same critique as the DCC models,

namely the number of parameters to estimate grows with the portfolio’s dimension.

Therefore, in this paper, we propose a novel method of forecasting the portfolio weight

vector. In the first step, we utilize realized covariance matrices to construct the ex post optimal

univariate portfolio performance measure of interest. In the second step, this series is forecasted

with a simple univariate HAR model. We then use a constraint optimization to obtain the

forecast of the weight vector which is optimal with respect to the chosen portfolio performance

measure. Our proposed direct weight estimation approach is easy to implement, relies on the

univariate forecast irrespectively of the portfolio dimension and is flexible enough to adapt to a

variety of portfolio performance criteria.

The remainder of the paper is organized as follows. Section 2 introduces the novel direct

weight estimation (DWE) approach. Section 3 illustrates the properties of DWE in a simulation

study. Section 4 examines its performance in an empirical study and discusses the restricted

DWE. Section 5 concludes.

2 Model

We are interested in the following dynamic portfolio choice problem. Starting with a market

with N distinct assets, we observe the N -dimensional asset prices Pt on a daily basis, where t
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denotes the index of the trading days. The corresponding return of holding the assets on day t

is defined as rt = Pt/Pt−1 − 1. We shall make the following assumption on the return process:

Assumption 1

On a filtered probability space (Ω,F , (Ft)t≥0,P), define an N -dimensional vector-valued daily

return process {rt}t=1,2,.... For each interval [t− 1, t], rt is generated as follows:

rt = µt +

∫ t

t−1
ΘsdWs, (1)

where µt is a Ft−1-predictable bounded random variable, Θs is an Fs-adapted N -by-N right-

continuous spot covolatility process, and Ws is an N -dimensional Wiener process. Denote

Σt =
∫ t
t−1 ΘsΘ

′
sds as the quadratic covariation of rt on [t− 1, t], we assume that for all ω ∈ RN

and t, it holds almost surely that 0 < ω′Σtω <∞ and that Σt is weakly stationary and ergodic.

In essence, the above assumption states that rt is the endpoint of a continuous semi-martingale

with some drift µt and a positive-definite and stationary quadratic covariation matrix Σt. The

continuous assumption is only for notational convenience and should not be viewed as a restriction

here, as the quadratic covariation is also well-defined in the presence of square-integrable finite-

activity jumps (see, for example, Chapter 1 of Aı̈t-Sahalia and Jacod (2014)), albeit with more

cumbersome expressions. The assumption implies that Et−1[rt] = µt and Vt−1[rt] = Et−1[Σt] by

construction and the Ito isometry, where Et−1[·] = E[·|Ft−1] is the Ft−1-conditional expectation

operator. For notational convenience we will denote Ωt = Et−1[Σt].

At time t, a representative investor would like to invest all her capital into the N assets

based on the information set Ft. She then waits till time t + 1 and rebalances the position

according to Ft+1, and the procedure iterates indefinitely. Let us use the N -by-1 vector ωt

to denote the weights assigned to each asset at time t based on Ft−1, which satisfies ωt ∈ S,

where S = {ω ∈ RN : ω′ι = 1} and ι is an N -by-1 vector of ones. The classical von Neumann-

Morgenstern theorem states that at time t, the investor should maximize the conditional

expectation of her utility of holding the portfolio ω′trt to solve for the portfolio weights:

ω?t = arg max
ωt∈S

Et−1[U(ω′trt)], s.t. ω′tι = 1. (2)
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where U(·) is the utility function of the investor. To simplify the analysis, we shall assume that

the investor has a simple mean-variance conditional utility function:

Et−1[Ut(ωt; γ)] = ω′tµt −
γ

2
ω′tΩtωt, (3)

where γ is the Arrow-Pratt risk-aversion coefficient. This can be considered as a second-order

Taylor expansion around Et−1[ω′trt] that approximates a general utility function (Bollerslev et al.,

2018a).

In this paper, we mainly discuss the case with γ = ∞, which suggests that the investor

is infinitely risk averse and cares only about the risk of the portfolio. Although the general

γ > 0 case can be dealt with in a similar manner using our method, setting γ =∞ allows us to

focus on optimizing the portfolio variance without the knowledge of µt, which is known to be

notoriously difficult to model precisely (Jagannathan and Ma, 2003). In this case, we effectively

have Ut(ωt) = −ω′tΩtωt, and the argument γ =∞ is suppressed for notational convenience. The

optimal ex ante weight vector that solves maxωt∈S Ut(ωt) is the well-known Global Minimum

Variance Portfolio (GMVP) weights:

ω?t =
Ω−1
t ι

ι′Ω−1
t ι

, (4)

which requires the knowledge of Ωt. However, modelling Ωt based only on the daily return

process proves to be very challenging due to the curse of dimensionality.

The recent developments in econometric methods for high-frequency data bring a new

solution to this problem. With high-frequency data, we can construct a sequence of daily realized

covariances {Σ̂t}t=1,2,... that estimates the quadratic covariation matrices {Σt}t=1,2,.... Under the

assumption that these estimators are conditionally unbiased such that Et−1[Σ̂t] = Et−1[Σt] = Ωt,

Ωt can be interpreted as the linear predictor of Σ̂t. The availability of {Σ̂t}t=1,2,... allows us to

consider a slightly easier problem:

GMVP allocation with high-frequency data: Given observations of daily realized

covariances {Σt}t=1,2,... and let us denote FΣ
t = σ({Σs : 0 ≤ s ≤ t}) as the filtration generated

by the daily realized covariances up to time t. The GMVP allocation problem is to find an

FΣ
t -adapted weight vector ωt ∈ S which maximizes Et−1[RUt(ωt)], where RUt(ωt) is the realized
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utility1 (RU) defined as:

RUt(ωt) = −ω′tΣ̂tωt. (5)

Here one can also enlarge the filtration FΣ
t to include more information in determining ωt.

Under the assumption that Σ̂t is conditionally unbiased, one sees that Et−1[RUt(ωt)] = Ut(ωt),

which reconciles with the previous task in Eq. (2).

For a particular choice of ωt, its performance can be evaluated by the unconditional RU:

E[RUt(ωt)] = E[−ω′tΣ̂tωt] = E[Ut(ωt)] ≤ E[Ut(ω
?
t )], (6)

where the second equality holds by the assumption of conditional unbiasedness of Σ̂t, and the last

equality is obtained iff ωt = ω?t . Importantly, since RUs are observed as long as Σ̂t is available,

the unconditional RU can be estimated consistently with a sufficiently long out-of-sample period

by the law of large numbers, similar to a standard forecasting exercise. This allows us to obtain

a more precise portfolio performance measure than the portfolio variance based on daily returns,

i.e. V[ω′trt].

The most popular solution to the GMVP problem with high-frequency data in the literature

is the so-called ‘plug-in’ method. The method consists of two steps. First, construct an FΣ
t−1-

adapted predictor Ω̂t of Σ̂t, usually using some least squares-based models. Second, plug Ω̂t into

Eq. (4) to obtain the estimated GMVP weights:

ω̂?t =
Ω̂−1
t ι

ι′Ω̂−1
t ι

. (7)

The rationale is straightforward: given the conditionally unbiasedness of Σ̂t, Ωt is the mean-

variance best linear predictor of Σ̂t, and Ω̂t is the sample counterpart of Ωt. Clearly, as Ω̂t

approaches Ωt, ω̂
?
t converges to ω?t , the optimal GMVP weight vector.

However, there are two major problems with the plug-in approach. First, to produce the

estimate Ω̂t, one needs to simultaneously model N(N + 1)/2 unique time series while ensuring

the positive-definiteness of Ω̂t in order to compute its inverse. The existing literature typically

employs some simplification or regularization in constructing the forecasting model, which

inevitably introduces a substantial amount of misspecification risk for modelling Ωt. Second,

1Note that for the general case with γ > 0, the realized utility can be defined as RUt(ωt; γ) = ω′trt − γ
2
ω′tΣ̂tωt.
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ω̂?t is by design an indirect estimator of ω?t , as the prediction model typically estimates Ω̂t by

minimizing its distance to Σ̂t in a mean-squared sense, which does not directly translate into a

higher expected utility due to the highly nonlinear functional form of ω̂?t in terms of Ω̂t.

The problems of the plug-in approach motivates us to propose a direct weight estimator

(DWE) of the portfolio weights. We utilize the fact that for any ω ∈ S, RUt(ω) is observed given

Σ̂t. Therefore, for a particular ω, we can compute an FΣ
t−1-adapted forecast of RUt(ω), denoted

as R̂U t(ω). The DWE approach attempts to find ω̂t that solves the following maximization

problem:

ω̂DWE
t = arg max

ω∈S
R̂U t(ω). (8)

Intuitively, ω̂DWE
t is the weight vector that produces the largest predicted RU. In practice, the

above problem can be solved easily by a gradient-based numerical optimization algorithm.

The DWE approach is more appealing than the plug-in method in several aspects: (1) instead

of modelling the full realized covariance matrices, for each ω we only model a univariate time

series {RUs(ω)}s=1:t−1 without the need to predict the realized covariance matrix, which is a

much simpler forecasting problem. One can thus fully exploit existing univariate prediction

models to reduce misspecification. (2) as opposed to the plug-in approach whose forecasting

target is Σ̂t which does not directly translate into a higher utility, the DWE approach by

construction directly maximizes the predicted RU, an estimator of the expected utility. (3)

the number of free parameters to estimate is only N − 1 for the DWE approach, which grows

linearly with N and is free from the curse of dimensionality. (4) the DWE approach can be easily

extended to account for constraints or modifications to the target function, e.g. a short-selling

constraint or a transaction cost-adjusted certainty equivalent, as one can simply add parameter

constraints and modify the target function of the numerical optimization algorithm. On the

contrary, such an estimate may not always be possible for plug-in-type estimators as a closed-form

solution of the weight vector as a function of Ωt may not exist.

2.1 Implementation Details

We now explain how the optimization problem of Eq. (8) is solved in detail. Suppose we construct

the daily realized covariance measures {Σ̂s}s=1:t−1 from day 1 to day t− 1, and we would like

to estimate the GMVP weights ω?t . For any vector ω ∈ S, we can form the time series of
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realized utility, {RUs(ω)}s=1:t−1. Note that given Σ̂t, the realized utility is bounded above

by RUs(ω) ≤ RUs(ω
∗
t ) = 1

ι′Σ̂−1
t ι

, where ω∗t = Σ̂−1ι
ι′Σ̂−1ι

is the ex post GMVP weight vector that

maximizes the realized utility. The upper bound allows us to construct loss functions to measure

the optimality of some ω relative to the ex post optimal choice ω∗t . Among the many possible

choices, we propose to use the log-distance loss function, defined as:

ldt(ω) = ln
RUt(ω

∗
t )

RUt(ω)
= ln[(ω′Σ̂tω)(ιΣ̂−1

t ι)] ≥ 0, ∀ω ∈ S. (9)

It is a loss function in the sense that ldt(ω) = 0 iff ω = ω∗t . We caution that ω̂∗t is different from

the ex ante optimal choice ω̂?t , as ω̂∗t requires the knowledge at time t which is not available to

the investor at time t− 1. However, since both RUt(ω
?
t ) and RUt(ω

∗
t ) are not functions of ωt,

using RUt(ω
∗
t ) instead of the unobserved RUt(ω

?
t ) as the benchmark of the loss function does

not alter the maximization problem.

For any fixed ω, we can construct the sequence of loss {lds(ω)}s=1:t−1 and predict the loss

at time t using a standard HAR model:

ldt(ω) = c+ β(1)ld
(1)
t−1(ω) + β(5)ld

(5)
t−1(ω) + β(22)ld

(22)
t−1 (ω) + ut, (10)

where ld
(k)
t−1(ω) = 1

k

∑k
s=1 ldt−s(ω). Fitting the above model with OLS, we obtain the ω-

dependent FΣ
t−1-adapted parameter estimates ĉ(ω), β̂(1)(ω), β̂(5)(ω), and β̂(22)(ω). Based on the

HAR model, the predicted one-day ahead loss at time t is then given by:

Ê[ldt(ω)|FΣ
t−1] = ĉ(ω) + β̂(1)(ω)ld

(1)
t−1(ω) + β̂(5)(ω)ld

(5)
t−1(ω) + β̂(22)ld

(22)
t−1 (ω). (11)

Setting R̂Ut(ω) ∝ exp(−E[ldt(ω)|FΣ
t−1]),2 the DWE approach solves the following problem

numerically:

ω̂DWE
t = arg max

ω∈S
R̂Ut(ω)⇔ arg min

ω∈S
Ê[ldt(ω)|FΣ

t−1], (12)

and the rightmost problem can be solved easily by standard gradient-based constraint optimiza-

tion algorithms, since Ê[ldt(ω)|FΣ
t−1] is a continuous function of ω by construction.

2Note that this is a naive forecast of RUt(ω)/RUt(ω
∗
t ) which is not mean-squared optimal due to the log-

transformation. B̊ardsen and Lütkepohl (2011) show that the naive forecast is preferable than the mean-squared
optimal one in the presence of specification and estimation uncertainty, which rationalizes our choice here.
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The choices of the loss function and the forecasting model require some discussion. First,

taking logarithms ensures the positivity of the predicted portfolio variance. Also, we find that

a linear prediction model is more appropriate for the log-difference loss than, e.g., a linear

difference loss or a ratio-based loss, generating much higher forecasting power.3 The HAR model

is not a requirement of our approach, and in principle any univariate time series prediction

model can be used here. The HAR model is chosen due to its computational simplicity (as the

predicted loss can be expressed in closed form) and ability to capture long-range dependence

commonly observed in empirical volatility time series.

Figure 1: Time series and autocorrelation plots of distance measure for ω = 0.5

0 50 100 150 200 250

T

-5

-4

-3

-2

-1

0

1

2

3

4

5

-0.2

0

0.2

0.4

0.6

0.8

1

S
a

m
p

le
 A

u
to

c
o

rr
e

la
ti
o

n

0 10 20 30 40 50

Lag

The left panel represents the time series of the log distances to realized utility from Eq. (9). The right panel plots
the SACF of realized distances from Eq. (9). The considered portfolio is formed of N = 2 assets using the data
introduced in Section 4. The distances are evaluated at the equally weighted portfolio (ω1,t = 0.5, ω2,t = 0.5).

Figure 1 depicts the time series and the sample autocorrelation function (SACF) of the

log-distance from Eq. (9), which we chose as a loss function to measure the quality of the

portfolio weight vector. The underlying data is introduced in Section 4. The decay in the sample

ACF motivates the choice of the HAR model and the time series plot itself motivates the choice

of the log-transformation.

The DWE approach provides a very flexible framework to account for various features in the

portfolio allocation exercise. For example, one can consider a short-selling constraint for the

portfolio weights ω, in the spirit of Fan et al. (2012). Let b ∈ [0, 1] denote the maximum allowed

3For the GMVP problem, one can alternatively minimize the predicted log portfolio variance, which is
numerically identical to the log-difference approach.

8



percentage of short selling for an individual stock, we can restrict the parameter space S to

Sb = {ω ∈ S : min(ω) ≥ −b}, which simply imposes an additional lower bound to ω and is trivial

to implement in practice. Multi-step portfolio allocation can also be considered by increasing

the forecasting horizon for the HAR model in Eq. (11). Moreover, a penalized DWE approach

can be designed to mitigate the impact of transaction costs by adding a regularization term to

Eq. (12). We elaborate the design of the regularization and the effectiveness of transaction cost

reduction using this feature in Section 4.2. Lastly, the DWE estimator can be easily adapted to

other portfolio allocation settings, e.g. the general γ > 0 case with or without a risk-free asset.

One simply needs to construct an appropriate loss function for the corresponding realized utility

given a fixed ω, and the DWE estimator can be computed as the weight vector that minimizes

the predicted loss.

3 Simulation study

In order to illustrate the advantages of the DWE approach over the plug-in type of weight

estimators, we simulate the following HAR-DRD return process rt with the covariance matrix

Σt and dynamic conditional correlations:

Σt = DtRtDt, Dt =


σ11,t . 0

0
. . . 0

0 . σNN,t

 , Rt =



1 ρ12,t . . . . ρ1N,t

ρ12,t 1 . . . . ρ2N,t

...
...

. . .
...

ρ1N,t . . ρ(N−1)N,t 1


, (13)

lnσ2
jj,t = βj,0 + βj,1 lnσ2

jj,t−1 + βj,2
1

5

5∑
i=1

lnσ2
jj,t−i + βj,3

1

22

22∑
i=1

lnσ2
jj,t−i + εj,t, (14)

vech(Rt) = α0 + α1vech(Rt−1) + α2
1

5

5∑
i=1

vech(Rt−i) + α3
1

22

22∑
i=1

vech(Rt−i) + εt, (15)

rt ∼ N (µ,Σt), εj,t ∼ t(νj), εt ∼ t(ν), (16)

where j = 1, ..., N , the vech(·) operator denotes the vector-form of the lower triangular part of a

matrix, and t(ν) denotes a Student-t distributed random variable with ν degrees of freedom.

We simulate 100 realizations of the HAR model with a maximum N of 93 using Eq. (13) to

Eq. (16), where the parameters of the data generating process are calibrated on the S&P100 data
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described in Section 4 below. For each simulated path, we simulate a series of 1763 observations

in total, where the number of observations is chosen to match the empirical analysis of this paper.

We construct one-step-ahead forecasts of GMVP portfolio weights based on our DWE approach

and several competing estimators use a rolling window approach with daily rebalancing, where

the in-sample estimation window length is T = 1000 with an out-of-sample evaluation horizon of

H = 63. The following competing portfolio weight estimators are considered:

1. the plug-in approach with a correctly specified HAR-DRD model, estimated on the

history of observed Σ1:t, where a one-step ahead forecast of the covariance matrix Ω̂t =

D̂t+1|tR̂t+1|tD̂t+1|t is calculated based on the estimated correctly specified HAR-DRD

Eq. (14) - Eq. (15);

2. the plug-in approach with a misspecified HAR-DRD model where the HAR and scalar

HAR in Eq. (14) - Eq. (15) are replaced with an AR(1) model;

3. the plug-in approach with a “shrinkage to market” covariance matrix estimated on returns

by Ledoit and Wolf (2004), where the last available estimate Ω̂t−1 is used for the weight

forecast.

We consider several evaluation metrics to assess the quality of the GMVP portfolio weight

vector estimates. First, we compute the expected utility difference between the ex post optimal

portfolio against the portfolio formed by the estimated weight vector, which is defined as:

E[d(ω̂t)] = Ê[RUt(ω
?
t )]− Ê[RUt(ω̂t)] = Ê

[
1

H

H∑
t=1

(
ω̂′tΣtω̂t −

1

ι′Σ−1
t ι

)]
, (17)

where Ê[·] stands for the Monte Carlo simulated expectation. Intuitively, a model with smaller

E[d(ω̂t)] on average generates GMVP portfolio with variance closer to the ex post optimal one,

hence it generates a higher expected utility on average and should be preferred. Second, we

compute the root mean squared error (RMSE) of the estimated portfolio variance against the ex

post optimal portfolio variance:

RMSE(ω̂t) = Ê

[√√√√ 1

H

H∑
t=1

(
ω̂′tΣtω̂t −

1

ι′Σ−1
t ι

)2
]
. (18)

The RMSE accounts for both the accuracy and the stability of the estimated GMVP portfolio
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variance. Although the variance of the estimated GMVP portfolio variance does not enter into

the investor’s utility function, from a forecasting perspective, it is frequently used as a loss

function to compare the performance of different predictive models. Third, we evaluate the

expected total transaction cost (TTC) of the estimated weight vectors, which measures the

practicality of the portfolio allocation methods. This measure is defined as:

E[TTC(ω̂)] = Ê
[
c ·

H∑
t=2

N∑
j=1

|ω̂j,t − ω̂j,t+ |′ι
]
, (19)

where TTC denotes transaction costs at period t, ω̂j,t+ is the actual (after a price change at

t) portfolio weight for asset j before rebalancing at t and c the cost per transaction (50 basis

points, DeMiguel et al. (2009)). We present the simulation results in Table 1.

Table 1: Simulation results of GMVP portfolio weight estimators.

N 3 13 23 33 43 53 63 73 83 93

Panel 1: E[d(ω̂t)]× 106

Correct HAR 3.964 1.656 0.902 0.650 0.557 0.461 0.430 0.380 0.350 0.320

Misspecified HAR 1.202 1.150 1.163 1.158 1.153 1.155 1.173 1.172 1.169 1.149

Ledoit Wolf (2004) 5.091 3.258 3.411 4.315 5.322 5.276 5.566 5.352 5.213 5.135

DWE 1.034 1.125 1.127 1.158 1.139 1.147 1.150 1.158 1.166 1.164

Panel 2: RMSE(ω̂t)× 106

Correct HAR 7.670 2.009 1.017 1.059 0.594 0.489 0.459 0.401 0.373 0.335

Misspecified HAR 1.295 1.145 1.163 1.143 1.157 1.159 1.199 1.194 1.191 1.164

Ledoit Wolf (2004) 3.991 3.018 3.200 3.476 5.273 5.197 5.481 5.281 5.075 5.014

DWE 0.987 1.111 1.138 1.159 1.147 1.153 1.151 1.159 1.163 1.161

Panel 3: E[TTC(ω̂)]

Correct HAR 0.043 0.063 0.065 0.065 0.069 0.069 0.071 0.072 0.074 0.077

Misspecified HAR 1.424 1.523 1.529 1.533 1.513 1.526 1.534 1.547 1.549 1.530

Ledoit Wolf (2004) 0.054 0.043 0.039 0.040 0.039 0.039 0.038 0.038 0.038 0.036

DWE 1.059 1.009 0.973 0.958 0.932 0.928 0.912 0.907 0.932 0.940

Numbers in the table correspond to the three simulated evaluation metrics as defined in Eq. (17) to Eq. (19) for the four
GMVP portfolio weight estimators averaged over 100 simulation draws with N ranging from 3 to 93. For each estimator
and N , the one-step ahead forecast of the portfolio weights is computed over an evaluation horizon of H = 63 observations
and an in-sample estimation window length T = 1000. The original values of the evaluation metrics are presented only for
the correct HAR model in blue, which serves as the benchmark for comparison. The evaluation metrics of the three other
methods are relative to the benchmark, i.e. they are divided by the corresponding values of the benchmark model.

To allow for better interpretation of the results, in Table 1 we use the correct HAR-DRD

model as the benchmark and present the evaluation metrics of the other three methods relative
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to the benchmark. Specifically, any evaluation metric less than one indicates that the method

outperforms the benchmark. Concluding from the performance of the benchmark, we see that

the correctly specified HAR generates both smaller and more stable GMVP variances as N

increases, evidenced by the declining E[d(ω̂t)] and RMSE(ω̂t) as a function of N . Unsurprisingly,

increasing N also leads to higher transaction costs, as more assets need to be traded to rebalance

the portfolio.

Regarding the performance of the misspecified HAR method, we see that misspecifying the

original HAR structure by AR(1) leads to a 15-20% increase in E[d(ω̂t)] and RMSE(ω̂t) and a

more than 50% increase in the transaction cost for almost every N . This result demonstrates the

problem of a potentially misspecified forecasting model for the conditional variance-covariance

matrix—even a mild misspecification can deteriorate the performance of the resulting GMVP

portfolio and may greatly inflate the transaction cost required.

Comparing the misspecified HAR method to our DWE method, we find that our method

almost uniformly dominates the misspecified HAR model for all three evaluation metrics across

different N . In terms of E[d(ω̂t)] and RMSE(ω̂t), the improvement over the misspecified HAR

method is perhaps numerically small and we cannot beat the correct HAR model. However, we

stress that for N ≥ 23, the DWE approach can significantly reduce the transaction cost relative

to the misspecified HAR model, and the transaction costs are even smaller than those of the

correct model specification. As the forecasting model for the realized covariances is likely to

be misspecified in empirical analysis, the simulation provides strong evidence to support the

advantage of the DWE method in practice, since it provides both more accurate and more

stable estimated GMVP portfolio variances and incurs less transaction costs compared to the

misspecified model across different choices of N . This finding is also confirmed in our empirical

analysis in Section 4 below.

As to the Ledoit and Wolf (2004) approach, it is clear that this method fails to capture

the dynamics of the conditional covariances of the assets, leading to a substantially inflated

E[d(ω̂t)] and RMSE(ω̂t) relative to the correct model. Being a shrinkage-type estimator, the

Ledoit and Wolf (2004) approach enjoys much lower transaction costs than the other three

dynamic rebalancing methods as expected. However, we note that one can explicitly include

transaction costs as a regularization term in the objective function of the DWE approach to
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further reduce the transaction cost of the DWE approach, which we discuss in Section 4.2. In

detail, we show that a restricted version of the DWE estimator can reduce the transaction cost

to a level that is comparable with a shrinkage-based approaches without a substantially inflated

portfolio variance.

4 Empirical Evidence

We now evaluate the DWE method and the plug-in competitors based on actual data. We

use the stocks contained in the S&P100 together with the SPY index and use daily data from

January 2014 until December 2020. We construct realized covariance matrices following the

flat-top realized kernel by Varneskov (2016) for the 93 stocks, including SPY, which result in a

time series of 1763 observations. Table 8 in the Appendix reports descriptive statistics of all the

stocks used in this paper. Daily returns exhibit the expected properties of left skewness and

over-kurtosis.

For the commonly used approaches for estimating GMVP weights we first estimate a one-step

ahead covariance matrix and then use it in a plug-in formula to calculate the weights ω̂t. We

consider:

1. a sample covariance matrix estimator computed based on T in-sample returns, where the

last available estimate is used for the weight forecast;

2. the last available realized covariance matrix of the sample Σ̂t, where the last available RC

is used for the weight forecast;

3. HAR-DRD model with HAR variance estimates and a sample estimator for the correlations;

4. HAR-DRD model with HAR variance estimates and a scalar HAR for the correlations

(Bollerslev et al., 2018b).

We adopt the standard assumption for the rolling window evaluation that the one-step ahead

forecast ω̂t is used to compute the out-of-sample return for the next period: r̂pt+1 = ω̂′t+1|trt+1.

The estimation window is shifted one period ahead H times resulting in the H × 1 vector of the

out-of-sample portfolio returns {r̂pt+1, . . . , r̂
p
t+H}.
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4.1 DWE

4.1.1 Realized portfolio variance

The DWE approach is explicitly designed to minimize the portfolio variance realized on the next

day:

r̂vpt+1 = ω̂′t+1|tΣ̂t+1ω̂t+1|t, (20)

where ω̂t+1|t = Ê[ωt+1|Ft] denotes a one-step ahead forecast of portfolio weights and Σ̂t+1

denotes the realized covariance matrix at day t+ 1. Therefore, we firstly compare the estimators

in terms of the mean realized portfolio variance over the out-of-sample period, which as H grows

estimates the unconditional realized utility from Eq. (6):

¯̂rv
p

=
1

H

H∑
h=1

r̂vpt+h, (21)

where H denotes the number of out-of-sample periods considered.

To compare the performance of different weight estimators across the portfolio dimension we

randomly select 100 unique subsets of size N from the pool of 93 assets. We then report the

average realized portfolio variance across 100 random portfolios. This guarantees that for a given

estimator the portfolio performance comparison is independent of the initial asset selection.

Table 2: Realized portfolio variance for T = 1000.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.000156 0.000149 0.000153 0.000150 0.000148
13 0.000105 0.000099 0.000108 0.000099 0.000092
23 0.000098 0.000097 0.000107 0.000091 0.000082
33 0.000095 0.000105 0.000114 0.000086 0.000077
43 0.000094 0.000122 0.000129 0.000081 0.000074
53 0.000094 0.000158 0.000162 0.000078 0.000073
63 0.000093 0.000228 0.000224 0.000075 0.000074
73 0.000093 0.000326 0.000349 0.000074 0.000072
83 0.000094 0.000382 0.000511 0.000073 0.000070
93 0.000094 0.000358 0.000440 0.000073 0.000069

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .

Table 2 reports the average realized portfolio variance ¯̂rv
p

across 100 randomly formed
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portfolios of size N for an in-sample estimation window of approximately 4 years and the out-of-

sample evaluation horizon H of 3 years. The last row corresponds to the mean realized portfolio

variance evaluated on the whole pool of 93 assets. For a given portfolio size N there is a clear

hierarchy between HAR-DRD models and the proposed DWE approach: introducing dynamics

into the conditional correlation matrix certainly facilitates the decrease in the out-of-sample

portfolio variance as the HAR-DCC model dominates the HAR-CCC with a constant conditional

correlation matrix. Moreover, the proposed DWE approach outperforms both HAR models.

In fact, across all the considered portfolio sizes N the proposed DWE approach results in the

lowest mean realized daily portfolio variance. Moreover, the realized portfolio variance decreases

with the dimension N , indicating the benefits of diversification. For the HAR-DRD with CCC

model and the plug-in strategy with the previous realized correlation RCt−1 the increase in

the portfolio size for N > 43 results in the increase of the portfolio variance, indicating that

diversification gains are suppressed by the increase in modelling errors.

The proposed DWE indirect weight estimation approach outperforms the competitors not

only in mean, but also across the 100 randomly drawn portfolios. Figure 2 depicts the boxplots of

average realized portfolio variances reflecting the distribution across randomly formed portfolios.

Each panel in the figure corresponds to a portfolio size N and each boxplot corresponds to a

weight estimation strategy and reflects the distribution of the out-of-sample portfolio variance

across 100 randomly selected portfolios. The improvements of the DWE become more obvious

with the increased portfolio dimension N , e.g. for N ≥ 43 the largest average realized portfolio

variance of DWE is lower than the smallest one of all the other approaches but the HAR-DRD

with a DCC specification, which is outperformed in mean.

4.1.2 Variance of out-of-sample returns

We now consider a commonly used portfolio performance measure, namely the out-of-sample

portfolio variance, which is computed in a rolling window of T = 1000 in-sample observations.

In the absence of realized covariances, different portfolio strategies are then evaluated based on
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Figure 2: Boxplots of the realized portfolio variance for T = 1000.

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 3

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 13

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 23

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 33

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 43

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 53

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 63

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 73

Sample RC(t-1) HAR_C HAR DWE

0.0001

0.00015

0.0002

0.00025
N = 83

Boxplots of the out-of-sample portfolio variances computed on net portfolio returns over a 100 randomly drawn portfolios
of size N . For each randomly drawn portfolio the realized portfolio variance is computed over an evaluation horizon of
H = 763 observations and an in-sample estimation window length T = 1000. X-axes denote different ways of computing
portfolio weights: Sample denotes the plug-in weight estimator as in Eq. (7) with a sample covariance matrix; RCt−1 for
plug-in approach with the last available realized correlation matrix; HAR C and HAR are the plug-in weights with HAR-
DRD approaches by Bollerslev et al. (2018b) with constant and dynamic correlations respectively; DWE for the proposed
approach. Note, the limits of the y-axes are fixed for comparison, thus for N ≥ 73 the boxplots for RCt−1 and HAR C are
no longer visible.

the out-of-sample variance σ̂2
os of portfolio returns given by:

σ̂2
os =

1

H − 1

H∑
h=1

(
r̂pt+h − µ̂os

)2
, (22)

where: µ̂os =
1

H

H∑
h=1

r̂pt+h =
1

H

H∑
h=1

ω̂′t+h|trt+h.

Table 3 reports the average out-of-sample variances of portfolios of different sizes N for an

estimation window of approximately 4 years and the out-of-sample evaluation horizon H of 3

years. The last row corresponds to the out-of-sample portfolio return variance evaluated on the

whole pool of 93 assets. The proposed DWE approach results in the smallest out-of-sample

portfolio variance for all portfolio sizes N .

Figure 3 provides more insights into the differences in the performance of the considered

weight estimators. The visual comparison of the boxplots across the portfolio dimension N

reveals that the difference in the performance of the estimators becomes apparent for larger

portfolios N ≥ 33. Similarly to the distribution of the realized portfolio variance, in terms of
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Table 3: Variance of out-of-sample portfolio returns for T = 1000.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.000136 0.000131 0.000132 0.000130 0.000129
13 0.000090 0.000091 0.000095 0.000088 0.000083
23 0.000083 0.000093 0.000097 0.000082 0.000076
33 0.000079 0.000105 0.000106 0.000079 0.000074
43 0.000078 0.000123 0.000122 0.000076 0.000072
53 0.000076 0.000157 0.000150 0.000073 0.000072
63 0.000075 0.000215 0.000205 0.000072 0.000071
73 0.000075 0.000316 0.000308 0.000072 0.000070
83 0.000075 0.000369 0.000400 0.000070 0.000069
93 0.000075 0.000355 0.000426 0.000069 0.000067

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .

Figure 3: Boxplots of the variance of the out-of-sample portfolio returns for T = 1000.
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Boxplots of the portfolio variances computed on out-of-sample portfolio returns over a 100 randomly drawn portfolios of
size N . For each randomly drawn portfolio the out-of-sample portfolio variance is computed over an evaluation horizon of
H = 763 observations and an in-sample estimation window length T = 1000. X-axes denote different ways of computing
portfolio weights: Sample denotes the plug-in weight estimator as in Eq. (7) with a sample covariance matrix; RCt−1 for
plug-in approach with the last available realized correlation matrix; HAR C and HAR are the plug-in weights with HAR-
DRD approaches by Bollerslev et al. (2018b) with constant and dynamic correlations respectively; DWE for the proposed
approach. Note, the limits of the y-axes are fixed for comparison, thus for N ≥ 73 the boxplots for RCt−1 and HAR C are
no longer visible.

the variance of the out-of-sample portfolio returns the closest competitor for the DWE approach

is the HAR-DRD model with dynamic structure on the conditional correlation matrix. However,

even for the larger portfolio dimensions N ≥ 63, when the medians of DWE and HAR are close
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to each other, the distribution of portfolio variance of the DWE has a lower interquartile range

compared to HAR, which indicates that the performance of the DWE is more robust to the

assets selection compared to HAR.

4.1.3 Transaction costs

We now compare different weight estimation strategies in terms of another empirically relevant

metric, namely the transaction costs incurred by dynamically rebalancing the portfolio, which is

also used in our simulation. For each randomly drawn portfolio, we compute the transaction

cost (TC) as:

TCt = c ·
N∑
j=1

|ω̂j,t − ω̂j,t+ |, (23)

where TCt denotes transaction costs at period t, ω̂j,t+ the actual (after a price change at t)

portfolio weight before rebalancing at t and c the cost per transaction (50 basis points, DeMiguel

et al. (2009)). For every randomly drawn portfolio we compute the total transaction costs over

the out-of-sample period as a sum
∑H

h=2 TCh:

Table 4: Transaction costs for T = 1000.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.027 1.153 0.771 0.517 0.451
13 0.063 3.777 3.481 1.513 1.276
23 0.104 6.618 6.385 2.334 2.029
33 0.150 10.021 9.834 3.168 2.759
43 0.193 14.229 14.039 3.861 3.343
53 0.241 19.819 19.534 4.576 3.806
63 0.289 26.786 26.269 5.232 4.030
73 0.335 33.901 33.150 5.799 4.258
83 0.386 38.486 38.592 6.410 5.225
93 0.437 48.595 47.626 6.978 4.661

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 1000.

Tables 4 reports the average TTC across 100 randomly formed portfolios of size N for an

in-sample estimation windows of T = 1000. The larger the asset space, the more expensive

is the daily rebalancing of the portfolio. Similarly to the comparisons of the out-of-sample

portfolio variance, there is a clear hierarchy between the models. Introducing dynamics into the
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conditional correlation matrix for the plug-in approach leads to a reduction in turnover costs.

The indirect DWE weight estimation dominates both of the HAR-DRD model specifications

and produces lower transaction costs. However, a simple sample covariance matrix estimator

appears to result in more stable weights over time reflected by low turnover costs. Even though

the plug-in weight estimation with a static forecast of sample covariance matrix results into a

higher realized variance and out-of-sample return variance, it might be beneficial for the investor

to control the amount of rebalancing.

4.2 Restricted DWE

To showcase the flexibility of the proposed direct weight estimation approach we introduce a

restricted DWE estimator, which imposes an `2-norm on the difference between the current and

the previous portfolio weight:

ω̂t,k = arg min
ω̂·,k

Êt−1[ld(ω̂t,k)] + λ

N∑
i=1

(ω̂t,k − ω̂t−1,k)
2, (24)

where λ is a tuning parameter which controls the stability of the weights over time: the larger

λ, the more stable the weight forecasts across time, which results in lower transaction costs.

Êt−1[ld(ω̂t,k)] for this example denotes a one-step ahead HAR-forecast of the log-distance:

α̂0 + α̂1ld(ω̂t−1,k) + α̂2
1
5

∑5
j=1 ld(ω̂t−j,k) + α̂3

1
21

∑21
j=1 ld(ω̂t−j,k). We utilise the same dataset and

as above for a given portfolio size N we form 100 unique portfolios out of the whole pool of the

assets. The reported results are averages over the 100 randomly drawn portfolios.

Figure 4 plots the time series of the estimated weights for unrestricted estimators (the upper

panels) and restricted DWE estimators (lower panels). As reported in Table 4 the estimated

weights of unrestricted DWE estimator with λ = 0 are more stable over time compared to HAR

DCC weights which corresponds to the lower amount of transaction costs. With the increase

in the tuning parameter λ, the estimated weights become more stable over time resulting in

the reduction of turnover costs. The trade-off the investor faces is between the out-of-sample

portfolio risk and the turnover costs of daily rebalancing, which for the restricted DWE estimator

is controlled by the tuning parameter λ.

We now compare our restricted estimator to the standard methods, which aim at the

intertemporal weight stabilization:
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Figure 4: Time series plots of HAR-DCC weight estimates and DWE with λ = 0, 1, 50.

Different panels on the plot correspond to the time series of estimated weights over the 3 years of the out-of-sample
period for N = 93. The upper left panel corresponds to the unrestricted HAR DCC weight estimator and other
panels correspond to the DWE with different values of the the tuning parameter λ.

1. Plug-in estimator with a shrinkage to market covariance matrix estimated on T in-sample

returns by Ledoit and Wolf (2004), where the last available estimate Σ̂t is used for the

weight forecast;

2. Plug-in estimator with non-linear eigenvalue shrinkage of the covariance matrix estimated

on T in-sample returns by Ledoit and Wolf (2020), where the last available estimate Σ̂t is

used for the weight forecast;

3. Equally weighted portfolio, which is rebalanced daily.

Table 5 reports the mean realized portfolio variance and Table 6 reports the mean out-of-

sample return variance for the restricted estimators.

We consider several values of the tuning parameter λ to determine how much would the

realized portfolio variance and the variance of the out-of-sample portfolio returns change with

the increase in the tuning parameter. For both tables the numbers in bold indicate the smallest

portfolio risk for a given size N across the models. For the realized portfolio variance the

extremely large penalties λ of the DWE estimator increase the portfolio risk, whereas for the

out-of-sample portfolio variance the increase in λ seems to be even rewarding for larger portfolio
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Table 5: Realized portfolio variance for T = 1000.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000156 0.000156 0.000149 0.000149 0.000150 0.000153 0.000155 0.000166
13 0.000103 0.000104 0.000093 0.000093 0.000094 0.000097 0.000099 0.000116
23 0.000095 0.000097 0.000082 0.000082 0.000082 0.000086 0.000089 0.000109
33 0.000091 0.000094 0.000077 0.000076 0.000076 0.000080 0.000084 0.000107
43 0.000089 0.000092 0.000074 0.000073 0.000073 0.000078 0.000082 0.000105
53 0.000088 0.000092 0.000073 0.000072 0.000072 0.000078 0.000080 0.000104
63 0.000087 0.000090 0.000074 0.000074 0.000075 0.000077 0.000078 0.000104
73 0.000086 0.000091 0.000072 0.000072 0.000072 0.000073 0.000075 0.000103
83 0.000085 0.000089 0.000070 0.000070 0.000070 0.000071 0.000072 0.000103
93 0.000085 0.000089 0.000069 0.000069 0.000069 0.000070 0.000071 0.000103

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .

sizes. Notably, the restricted DWE estimator outperforms both shrinkage approaches and the

equally weighted portfolio independently of the tuning parameter choice.

Table 6: Variance of out-of-sample portfolio returns for T = 1000.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000136 0.000136 0.000130 0.000130 0.000131 0.000133 0.000136 0.000147
13 0.000089 0.000090 0.000084 0.000084 0.000084 0.000085 0.000087 0.000104
23 0.000083 0.000083 0.000077 0.000076 0.000076 0.000077 0.000078 0.000098
33 0.000078 0.000079 0.000074 0.000074 0.000073 0.000072 0.000074 0.000096
43 0.000077 0.000077 0.000072 0.000071 0.000071 0.000071 0.000072 0.000094
53 0.000075 0.000075 0.000072 0.000071 0.000070 0.000070 0.000071 0.000093
63 0.000074 0.000075 0.000072 0.000072 0.000072 0.000070 0.000070 0.000093
73 0.000073 0.000074 0.000071 0.000071 0.000070 0.000068 0.000068 0.000093
83 0.000072 0.000073 0.000069 0.000068 0.000068 0.000064 0.000066 0.000092
93 0.000072 0.000073 0.000067 0.000066 0.000065 0.000064 0.000066 0.000092

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 1000. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .

Table 7 reports the average total transaction costs for the restricted estimator. The penalisa-

tion of `2-norm on the intertemporal difference of the portfolio weights reduces the amount of

transaction costs to the level of the shrinkage estimators without paying a huge price in terms

of the out-of-sample portfolio risk. The exact choice of λ depends however on the individual

preferences and the utility function of the investor.

Tables in Appendix A.2 and A.3 provide robustness checks of the same analysis as above but

for a shorter sample size T = 250. We find that the proposed direct weight estimation approach
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Table 7: Transaction costs for T = 1000.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.027 0.027 0.386 0.276 0.212 0.060 0.030 0.029
13 0.056 0.061 1.159 0.906 0.740 0.235 0.079 0.033
23 0.088 0.099 1.851 1.452 1.192 0.391 0.129 0.034
33 0.121 0.140 2.492 1.939 1.588 0.523 0.174 0.034
43 0.153 0.177 3.045 2.353 1.920 0.634 0.213 0.034
53 0.186 0.216 3.430 2.648 2.162 0.728 0.249 0.034
63 0.219 0.253 3.669 2.888 2.387 0.835 0.287 0.034
73 0.251 0.294 3.977 3.244 2.746 1.008 0.345 0.034
83 0.282 0.327 4.948 4.137 3.544 1.306 0.443 0.034
93 0.314 0.364 4.402 3.717 3.202 1.221 0.427 0.034

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 1000.

performs similarly well for smaller sample sizes. The restricted version still outperforms its

shrinkage competitors in terms of the out-of-sample investment risk, keeping the transaction

cost level low at the same time.

5 Conclusions

This paper introduces a novel direct portfolio weight estimation approach (DWE), which is

particularly beneficial for higher dimensional portfolios. The main contribution of the proposed

weight estimation is the reduction of the multidimensional forecasting into a one-dimensional

problem using realized utility.

Realized covariance matrices are used to construct a time series of previously optimal

portfolio variances and the optimal weight vector forecast is recovered directly from the series

of realized portfolio variances through a constrained optimization. This guarantees that the

DWE maximises the predicted realized utility, an estimator of expected utility. The main

advantage of the proposed direct weight estimation approach is the mitigation of the curse of

the dimensionality problem. For the method to function we only require a univariate time series

forecasting model, and thus the number of parameters to be estimated does not depend on the

number of assets in the portfolio. In the empirical application we have illustrated that a simple

HAR model is a good enough forecasting tool for the proposed estimator to outperform the

main competitors which are based on both realized covariance forecasting and shrinkage of the
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covariance matrices.

The proposed method is extremely flexible and can be adapted to any portfolio performance

measure of interest which can be constructed ex-post using realized returns. We have demon-

strated that the DWE can be easily extended to control for the amount of portfolio rebalancing,

which leads to a reduction of transaction costs. And as a potential improvement of the method

one could investigate whether the univariate forecasting model used in the proposed method can

be improved upon with machine learning techniques.
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Äıt-Sahalia, Y. and J. Jacod (2014): High-frequency financial econometrics, Princeton

University Press.

Bårdsen, G. and H. Lütkepohl (2011): “Forecasting levels of log variables in vector

autoregressions,” International Journal of Forecasting, 27, 1108–1115.

Bauwens, L., S. Laurent, and J. V. Rombouts (2006): “Multivariate GARCH models: a

survey,” Journal of Applied Econometrics, 21, 79–109.

Bollerslev, T., B. Hood, J. Huss, and L. H. Pedersen (2018a): “Risk Everywhere:

Modeling and Managing Volatility,” The Review of Financial Studies, 31, 2729–2773.

Bollerslev, T., A. J. Patton, and R. Quaedvlieg (2018b): “Modeling and forecasting

(un) reliable realized covariances for more reliable financial decisions,” Journal of Econometrics,

207, 71–91.

Brodie, J., I. Daubechies, C. D. Mol, D. Giannone, and I. Loris (2009): “Sparse

and stable Markowitz portfolios,” Proceedings of the National Academy of Sciences, 106,

12267–12272, PMID: 19617537.

Corsi, F. (2009): “A simple approximate long-memory model of realized volatility,” Journal of

Financial Econometrics, 7, 174–196.

DeMiguel, V., L. Garlappi, and R. Uppal (2009): “Optimal Versus Naive Diversification:

How Inefficient is the 1/N Portfolio Strategy?” Review of Financial Studies, 22, 1915–1953.

Engle, R. (2002): “Dynamic conditional correlation: A simple class of multivariate general-

ized autoregressive conditional heteroskedasticity models,” Journal of Business & Economic

Statistics, 20, 339–350.

Engle, R. F., O. Ledoit, and M. Wolf (2019): “Large dynamic covariance matrices,”

Journal of Business & Economic Statistics, 37, 363–375.

Fan, J., J. Zhang, and K. Yu (2012): “Vast Portfolio Selection With Gross-Exposure

Constraints,” Journal of the American Statistical Association, 107, 592–606.

Golosnoy, V., B. Gribisch, and R. Liesenfeld (2012): “The conditional autoregressive

Wishart model for multivariate stock market volatility,” Journal of Econometrics, 167, 211–223.

24



Goto, S. and Y. Xu (2015): “Improving Mean Variance Optimization through Sparse Hedging

Restrictions,” Journal of Financial and Quantitative Analysis, 50, 1415–1441.

Hafner, C. M. and O. Linton (2010): “Efficient estimation of a multivariate multiplicative

volatility model,” Journal of Econometrics, 159, 55–73.

Hautsch, N., L. M. Kyj, and P. Malec (2015): “Do high-frequency data improve high-

dimensional portfolio allocations?” Journal of Applied Econometrics, 30, 263–290.

Jagannathan, R. and T. Ma (2003): “Risk Reduction in Large Portfolios: Why Imposing

the Wrong Constraints Helps,” The Journal of Finance, 58, 1651–1684.

Jin, X. and J. M. Maheu (2013): “Modeling realized covariances and returns,” Journal of

Financial Econometrics, 11, 335–369.

Ledoit, O. and M. Wolf (2004): “Honey, I Shrunk the Sample Covariance Matrix,” The

Journal of Portfolio Management, 30, 110–119.

——— (2014): “Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz

Meets Goldilocks,” Working paper, Department of Economics, University of Zurich.

——— (2020): “Analytical nonlinear shrinkage of large-dimensional covariance matrices,” Annals

of Statistics, 48, 3043–3065.

Li, J. (2015): “Sparse and Stable Portfolio Selection with Parameter Uncertainty,” Journal of

Business & Economic Statistics, 33, 381–392.

Tse, Y. K. and A. K. C. Tsui (2002): “A multivariate generalized autoregressive conditional

heteroscedasticity model with time-varying correlations,” Journal of Business & Economic

Statistics, 20, 351–362.

Varneskov, R. T. (2016): “Flat-top realized kernel estimation of quadratic covariation with

nonsynchronous and noisy asset prices,” Journal of Business & Economic Statistics, 34, 1–22.

Yen, Y.-M. (2015): “Sparse Weighted-Norm Minimum Variance Portfolios,” Review of Finance,

20, 1259–1287.

25



A Appendix

A.1 Descriptive statistic

Table 8: Descriptive statistic

Returns Realized Covariance

Ticker Mean Skewness Kurtosis Average variance Average correlation

AAPL 0.0005 -0.1497 6.4232 0.0002 0.2702
ABBV 0.0000 -0.4049 7.0031 0.0003 0.1944
ABT 0.0003 -0.4526 8.9318 0.0002 0.2904
ACN 0.0006 0.4866 12.9030 0.0002 0.3233
ADBE 0.0005 -0.3117 6.5015 0.0002 0.2304
AIG -0.0002 -0.5365 14.6920 0.0003 0.2718
ALL 0.0002 0.0173 11.0979 0.0002 0.3294
AMGN 0.0000 0.1813 6.6015 0.0002 0.2114
AMT 0.0002 0.2202 11.4673 0.0002 0.2007
AMZN -0.0002 -0.3121 5.8850 0.0002 0.2433
AXP -0.0002 0.4598 15.1984 0.0002 0.3295
BA -0.0005 -0.9317 14.6866 0.0003 0.2414
BAC -0.0002 -0.0912 7.4706 0.0002 0.2859
BK 0.0000 -0.2275 6.3893 0.0002 0.2954
BLK -0.0002 -0.2301 12.3504 0.0002 0.2738
BMY -0.0002 -0.4521 6.3678 0.0002 0.2166
BRK B -0.0004 -0.2212 7.8560 0.0001 0.4127
C -0.0003 -0.1221 8.5162 0.0003 0.2720
CAT 0.0002 -0.2360 7.1445 0.0002 0.2476
CHTR 0.0005 -0.0459 5.9367 0.0003 0.1569
CL 0.0003 0.2390 11.8459 0.0001 0.2715
CMCS A 0.0002 0.1483 8.0642 0.0002 0.2461
COF -0.0002 -0.3628 10.3964 0.0003 0.2749
COP -0.0004 0.3319 8.3627 0.0004 0.1729
COST 0.0003 -0.0652 8.0229 0.0001 0.2763
CRM 0.0001 -0.0603 6.9354 0.0003 0.1965
CSCO 0.0003 0.0397 10.2466 0.0002 0.3086
CVS -0.0003 -0.0705 6.5906 0.0002 0.2458
CVX -0.0004 -1.0226 23.3743 0.0002 0.2430
DHR 0.0001 -0.6288 11.8489 0.0001 0.3196
DIS -0.0003 -0.3321 11.0017 0.0002 0.2985
DUK 0.0002 -0.1082 13.7510 0.0001 0.1564
EMR -0.0001 -0.0596 14.1665 0.0002 0.2931
EXC 0.0003 0.3519 14.1422 0.0002 0.1590
F -0.0012 -0.0253 7.2240 0.0003 0.2412
FB 0.0003 -0.1495 5.4549 0.0003 0.2130
FDX -0.0001 0.1376 9.8415 0.0002 0.2506
GD 0.0000 -0.0323 7.3266 0.0002 0.2782
GE -0.0009 -0.0106 8.2354 0.0003 0.2557
GILD -0.0008 0.0066 6.3041 0.0003 0.1896
GM -0.0009 -0.0418 6.8607 0.0003 0.2176
GOOG 0.0001 -0.5207 5.6488 0.0002 0.2812
GS 0.0000 0.0049 7.7132 0.0002 0.2786
HD 0.0003 -0.3000 10.0399 0.0002 0.2997
HON 0.0000 0.0485 9.9954 0.0002 0.3560
IBM -0.0001 -0.1310 7.4394 0.0001 0.3340
INTC 0.0007 0.5830 9.8934 0.0002 0.2546
JNJ 0.0000 -0.9633 11.6151 0.0001 0.3004
JPM 0.0000 0.0840 6.7562 0.0002 0.3257
KMI -0.0009 -0.5889 12.7430 0.0003 0.1861
KO 0.0001 -0.7802 13.3800 0.0001 0.2868
LLY 0.0004 0.2805 8.6657 0.0002 0.2204
LMT -0.0001 0.1999 14.5327 0.0002 0.2625
LOW 0.0002 -1.2937 18.4849 0.0002 0.2557
MA 0.0000 -0.5586 11.0735 0.0002 0.2944
MCD 0.0003 0.7493 15.5476 0.0001 0.2714
MDLZ 0.0001 0.1956 6.3841 0.0002 0.2613
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MDT -0.0002 -0.3879 6.5070 0.0002 0.2857
MET -0.0002 -0.3230 9.9861 0.0002 0.2721
MMM -0.0001 -0.6260 12.7065 0.0001 0.3403
MO 0.0001 -0.8173 13.3655 0.0002 0.2160
MRK -0.0003 -0.1954 7.7219 0.0002 0.2658
MS -0.0001 0.1162 7.0550 0.0003 0.2649
MSFT 0.0004 -0.2448 6.6762 0.0002 0.2858
NEE 0.0005 0.3198 11.8549 0.0002 0.1541
NFLX 0.0003 0.1275 5.4112 0.0004 0.1444
NKE 0.0001 -0.0303 7.1928 0.0002 0.2527
NVDA 0.0006 -0.2058 6.5883 0.0004 0.1682
ORCL 0.0004 0.3310 9.7702 0.0002 0.3085
PEP 0.0003 -0.7301 26.4735 0.0001 0.2796
PFE -0.0004 -0.4543 7.7439 0.0002 0.2667
PG 0.0003 -0.0283 12.3701 0.0001 0.2641
PM 0.0002 -0.2862 9.5891 0.0002 0.2205
QCOM 0.0002 1.1946 23.3548 0.0002 0.2357
SBUX 0.0002 -0.1219 7.5749 0.0002 0.2678
SLB -0.0007 0.0977 8.1619 0.0004 0.1684
SO 0.0005 0.7008 23.5597 0.0001 0.1550
SPG -0.0009 -2.0751 36.4763 0.0003 0.1552
T -0.0003 -0.2502 7.3867 0.0001 0.2741
TGT 0.0000 0.0721 7.3790 0.0002 0.2114
TMO 0.0002 -0.4640 7.0247 0.0002 0.2597
TSLA 0.0003 0.3980 6.0261 0.0007 0.1170
TXN 0.0005 0.0199 6.9090 0.0002 0.2678
UNH 0.0002 -0.0329 8.4897 0.0002 0.2192
UNP 0.0003 0.0722 6.3295 0.0002 0.2471
UPS 0.0001 0.5287 10.3149 0.0002 0.3016
USB 0.0000 0.0795 12.3455 0.0002 0.3282
V 0.0000 -0.1663 7.5423 0.0002 0.3068
VZ 0.0000 0.2728 7.2173 0.0001 0.2516
WFC -0.0003 -0.3321 10.1079 0.0002 0.3039
WMT 0.0003 -0.0624 13.9357 0.0001 0.2544
XOM -0.0005 -0.1676 7.7057 0.0002 0.2665
SPY 0.0001 -0.5152 9.9201 0.0001 0.7513

The table reports the sample moments of the returns used in Section 4 and time series average realized variances and
correlations with the other assets.
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A.2 Unrestricted estimators, T = 250

Table 9: Realized portfolio variance for T = 250.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.0000662 0.0000648 0.0000656 0.0000643 0.0000641
13 0.0000392 0.0000382 0.0000408 0.0000360 0.0000357
23 0.0000366 0.0000369 0.0000403 0.0000321 0.0000316
33 0.0000370 0.0000391 0.0000427 0.0000300 0.0000298
43 0.0000382 0.0000443 0.0000484 0.0000288 0.0000285
53 0.0000406 0.0000541 0.0000579 0.0000282 0.0000281
63 0.0000422 0.0000676 0.0000705 0.0000276 0.0000275
73 0.0000471 0.0000769 0.0000798 0.0000273 0.0000272
83 0.0000504 0.0000775 0.0000828 0.0000269 0.0000274
93 0.0000556 0.0001350 0.0001309 0.0000266 0.0000269

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .

Table 10: Variance of out-of-sample portfolio returns for T = 250.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.000058 0.000058 0.000058 0.000058 0.000058
13 0.000036 0.000036 0.000038 0.000035 0.000036
23 0.000034 0.000034 0.000037 0.000033 0.000033
33 0.000033 0.000036 0.000039 0.000031 0.000031
43 0.000033 0.000040 0.000043 0.000031 0.000031
53 0.000034 0.000046 0.000048 0.000030 0.000030
63 0.000034 0.000054 0.000055 0.000030 0.000029
73 0.000035 0.000061 0.000060 0.000030 0.000029
83 0.000036 0.000064 0.000062 0.000029 0.000030
93 0.000037 0.000119 0.000114 0.000029 0.000027

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .
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Table 11: Transaction costs for T = 250.

N
Sample HAR-DRD HAR-DRD DWE

cov RCt−1 CCC DCC

3 0.040 1.204 0.723 0.490 0.471
13 0.155 3.617 3.218 1.335 1.446
23 0.284 6.140 5.784 2.030 2.227
33 0.434 9.006 8.662 2.714 2.841
43 0.592 12.310 11.925 3.274 3.311
53 0.771 16.251 15.756 3.842 3.649
63 0.966 20.565 19.907 4.337 3.815
73 1.190 24.479 23.690 4.869 4.304
83 1.427 27.266 26.424 5.295 5.533
93 1.691 41.147 40.055 5.731 4.941

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 250.

A.3 Restricted estimators, T = 250

Table 12: Realized portfolio variance for T = 250.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000066 0.000066 0.000065 0.000065 0.000065 0.000065 0.000065 0.000071
13 0.000038 0.000038 0.000036 0.000036 0.000036 0.000036 0.000035 0.000043
23 0.000035 0.000035 0.000031 0.000031 0.000031 0.000032 0.000031 0.000040
33 0.000033 0.000033 0.000029 0.000029 0.000029 0.000031 0.000029 0.000038
43 0.000032 0.000033 0.000028 0.000028 0.000028 0.000034 0.000029 0.000037
53 0.000031 0.000033 0.000028 0.000028 0.000028 0.000034 0.000030 0.000037
63 0.000031 0.000032 0.000027 0.000027 0.000027 0.000036 0.000029 0.000036
73 0.000030 0.000033 0.000027 0.000027 0.000027 0.000034 0.000027 0.000036
83 0.000030 0.000032 0.000027 0.000027 0.000027 0.000033 0.000026 0.000036
93 0.000030 0.000032 0.000027 0.000026 0.000026 0.000031 0.000026 0.000036

Numbers in the table correspond to the average realized GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole
available pool of assets. For each portfolio the realized variance is computed over an evaluation horizon of H = 763
observations and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest realized
portfolio variance for a given portfolio size N .
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Table 13: Variance of out-of-sample portfolio returns for T = 250.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.000058 0.000058 0.000060 0.000060 0.000060 0.000060 0.000060 0.000067
13 0.000036 0.000036 0.000036 0.000036 0.000036 0.000036 0.000035 0.000044
23 0.000033 0.000033 0.000032 0.000032 0.000032 0.000034 0.000032 0.000041
33 0.000032 0.000032 0.000031 0.000031 0.000031 0.000034 0.000031 0.000040
43 0.000031 0.000031 0.000030 0.000030 0.000031 0.000037 0.000032 0.000039
53 0.000031 0.000030 0.000030 0.000030 0.000030 0.000038 0.000033 0.000039
63 0.000031 0.000030 0.000029 0.000029 0.000029 0.000040 0.000032 0.000038
73 0.000030 0.000029 0.000029 0.000028 0.000028 0.000038 0.000029 0.000038
83 0.000030 0.000029 0.000030 0.000029 0.000028 0.000037 0.000028 0.000038
93 0.000030 0.000029 0.000027 0.000026 0.000026 0.000035 0.000028 0.000038

Numbers in the table correspond to the average out-of-sample GMVP portfolio variance computed on out-of-sample portfolio
returns of portfolios of size N across 100 unique subsets of 93 assets. The last row reports the results over the whole available
pool of assets. For each portfolio the out-of-sample return is computed over an evaluation horizon of H = 763 observations
and an in-sample estimation window length T = 250. Numbers in bold correspond to the smallest out-of-sample portfolio
variance for a given portfolio size N .

Table 14: Transaction costs for T = 250.

N
Ledoit and Ledoit and DWE DWE DWE DWE DWE Equally
Wolf 2004 Wolf 2020 λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 50 weighted

3 0.038 0.039 0.418 0.299 0.228 0.060 0.025 0.022
13 0.113 0.138 1.341 1.092 0.915 0.302 0.091 0.025
23 0.184 0.231 2.041 1.697 1.441 0.546 0.166 0.025
33 0.252 0.325 2.647 2.210 1.890 0.792 0.243 0.025
43 0.318 0.405 3.099 2.621 2.270 1.049 0.322 0.025
53 0.383 0.488 3.386 2.886 2.510 1.264 0.391 0.025
63 0.451 0.561 3.600 3.104 2.727 1.457 0.454 0.025
73 0.512 0.641 4.119 3.568 3.144 1.649 0.528 0.025
83 0.574 0.707 5.353 4.603 4.005 1.917 0.625 0.025
93 0.634 0.776 4.709 4.064 3.533 1.804 0.616 0.025

Numbers in the table correspond to the average total transaction costs computed according to Eq. (23) for portfolios of size
N across 100 unique subsets of 93 assets. The last row reports the results over the whole available pool of assets. For each
portfolio the TTC is computed over an evaluation horizon of H = 763 observations and an in-sample estimation window
length T = 250.
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